
J. Appl. MarhsMechs Vol.56,No.3,pp.390-395,1992 1~l121-x’)2x/Y?9l~.oli+ 00 

Printed in Great Britain. (12, IYY? Pergamon Prcsk Ltd 

FREE HIGH-FREQUENCY VIBRATIONS OF ANISOTROPIC 
PLATES OF VARIABLE THICKNESS? 

P. E. TOVSTIK 

St Petersburg 

(Received 15July 1991) 

Part of the spectrum of the frequencies of free high-frequency vibrations of a uniform anisotropic plate of 

variable thickness is investigated by the method of asymptotic integration of the three-dimensional dynamic 

equations of the theory of elasticity. The modes of vibration, which have one or several deformation 

half-waves in the direction of the plate thickness, are considered. It is assumed that one of the end surfaces 

of the plate is plane while the other is smooth with a maximum point. The conditions for the existence of 

modes of vibration localized in the neighbourhood of the maximum point of the plate thickness are found, 

and approximate expressions are obtained for the frequencies and modes of vibration of this kind. 

THE INTEREST in vibrations of this kind is due to quartz resonators whose construction can have the 
form of plates of variable thickness [l-4], where one of the end surfaces is plane and the other 
spherical. High-frequency vibrations of shells, which are accompanied by wave formation in the 
direction of the thickness were investigated in [I?]. 

1. We will write the system of equations of harmonic vibrations of a three-dimensional elastic 
anisotropic body in a Cartesian system of coordinates x1 , x2, x3 [6] 

Eijk, dZUk 
dx,dr, 

-t ~CO’U~ z 0 (E,jk, -: Ejih.1 - E,I,j) (1.1) 

where uk are the projections of the variable, Ei;k/ are the components of the tensor of the moduli of 
elasticity, p is the density and o is the frequency of the vibrations. The summation is carried out over 
repeated subscripts, where the Latin subscripts take the values 1, 2, 3, while the Greek subscripts 
take the values 1,2. 

Suppose the plate occupies the region 

O<x,ih (2,. .x2) 

h (x,, I:) =h,,- ‘l~H-‘j2+H-~j3fH--.7j:+ . . 

fr (x1* J-2) = dijX,‘Z,‘, k -C 2. :I. . . 
i+j=k 

and the thickness of the plate h is a maximum at x1 = x2 = 0. Here R is the characteristic radius of 
curvature of the upper end surface and fk are homogeneous polynomials in x1 and x2 of degree k 
with dimensionless coefficients dij , and the quadratic form fz is assumed to be positive definite. 

The end surfaces of the plate are assumed to be free, which gives the following boundary 
conditions: 

(Jo=0 (z,=O) 

u,.1- (~hl~;r,)oi,=O (sF=h(5,, 52)) (1.2) 

U,,=Ei,ktdUhjdI,, i, j-1, 2, 3 

t Prikl. Mat. Mekh. Vol. 56, NO. 3, pp. 473-479, 1992. 



Free high-frequency vibrations of anisotropic plates 391 

Below we will consider only modes of vibration that decay exponentially as xi* +x2* increases and 
are henceforth called localized. The boundary conditions on the end surface have no effect on these 
vibrations and will therefore not be specified more exactly. 

2. We will assume first of all that the thickness of the plate is constant (h(xi, x2) = ho and the 
functions ui depend only on x3. Then the boundary-value problem (1.1)) (1.2) reduces to the form 

Ei,,~dZU,/dX,2+po2ui=0, L&/dX,*O (x3=0, ho) (2.1) 

and defines three series of vibration frequencies 

Op”=nJ&-‘(&,p-‘)‘. (p=l, 2, 3; n=l, 2,. . .) (2.2) 

where X, are the eigenvalues of the matrix Eisk3. 
The following types of vibrations correspond to the frequencies (2.2): 

IA,’ (X3) =Uip COS(nnho-‘xs) (2.3) 

where ZJ;P are the eigenvectors of the matrix Ej3k3, which are assumed to be normalized 

Ei3~~Uk”=hpU~‘, UiPUiq=6pq (2.4) 

The frequencies of the localized modes of vibration considered below are grouped in the region of 
the frequencies wPn. 

3. We will carry out a number of transformations. Instead of the unknown functions Ui we will 
introduce the functions vP in accordance with the formulas 

I&(X,, X?. x3)=UipUp(X,, x2. x3) (3.1) 

Then relations (1.1) and (1.2), after multiplying by Uiq and adding, take the form 

C,p,d’Vp/dX,dXr+po’V,=0, Cq)pt=Eij~,UiqU~p (3.2) 

Cq3pldvpld.rI- (dhldx,)C,,prdvpldx,=O for xJ=h(x,, x2) (3.3) 

For x3 = 0 the boundary condition is obtained by omitting the second term on the left-hand side of 
(3.3). 

We will introduce the small parameter )I and extend the scales of the variables xi using the 
formulas 

u’=hG/l-‘, xa=Ku3y, (a=l. 2). x3-h& 

(3.4) 
f=f(ya. ~L==l--(l?~L’)j2(yo)+~LSfS(y,)+. . . 

Then 0 G zs 1 and, as later calculations show, in the region of interest ya - 1. 
Instead of the unknown functions v~(cc~) we will introduce the function 

Then 
vi’ (go9 Z) ‘Ui(Xa, 5,) (3.5) 

(3.6) 
D,=didy,--zf-’ (df/dy,)d/dz, a-l, 2 

By virtue of the fact that, by (3.4), #/8yu = O(~.L’), the differential operators and 8/ay, differ only 
in small terms. Henceforth, for brevity, we will omit the prime on vi. 

After making the changes (3.4)-(3.6), Eqs (3.2) and the boundary conditions (3.3) take the form 

h,f-=d2v,/dz2+h,2p02v~+~B~~D~ (f-‘dv,/dz) + 

+cL~C,,,,ID~~D,IV~=O, &p=Cpcrm+Cp~pa (3.7) 
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-~(~fldyo)+~(~*a~Sf-‘~~~l~~+C~~S~bV~)=O (z=l) (3.X) 

The boundary conditions for z = 0 are obtained from (3.8) by dropping terms with the factor 
aflay,. Note that these terms are of the order of t_~’ compared with the principal terms and have no 
effect when constructing the first approximations obtained below. This fact enables us to extend the 
results obtained to plates both of whose end surfaces are not plane 

h,(&)~(rJ~kz(&), I+,)=&--h, (3.9) 

taking h(x,) from (3.9) in subsequent calculations. 

4. We will choose one of the eigenvalues A, of the matrix Eisk3 and we will attempt to construct 
the corresponding three-parameter series of frequencies and modes of localized vibration. Without 
loss of generality we will assume that A, = Ag. We will also assume that X, # X3 (0~ = 1,2). 

We will seek the solution in the form of formal series of powers of 

The unknown functions vpO( ya , > z an d numbers Pk are found by substituting the series (4.1) into 
(3.7) and (3.8). For p” we obtain the homogeneous boundary-value problem 

hra*v,‘0’/az~+hoop02v~‘~) -0, av,‘“‘/&~o (z-0, 1) (4.2) 

the solution of which 

f$‘)($/~, 2)~~~~~)~S(~Z), O-OSn, Rz=i, 2,. * . (4.3) 

agrees with (2.2) and (2.3) but unlike (2.3) contains the function V(y,), determined from 
subsequent approximations. 

The functions ~q(t) in (4.1) are found from the non-homogeneous boundary-value problems 

h,CYv,“‘l&z2+~, (nn)zv,“‘- nnB,s(aY/ay,)sin(nnz)=O 

~&?v,“’ i?z+c,saQ (iYVldy,)cos(nnz) =o (z=O, 1) (4.4) 

When 4 = p = 1,2, problems (4.4) have the solution 

sin(nnz)- 
i 

BBCL3 %BU 8’ F,(z) h _-x 
3 R ‘-- %I &CC k, i -- 

(4.5) 

(cos ‘/sks)-r sin E, n = 2k 

FB (‘I = (sin l/zk&l cos E, n = 2k + 1; E = k, (z - I/*) 

We see that the solution (4.5) does not exist if k, = (2k + 1)n for even II and k, = 2kn for odd ~1, 
i.e. in cases of “internal resonances”, when the frequency mLIn [see (2.2)] is identical with one of the 
frequencies 03m, and the evenness of the numbers y1 and m are different. We can establish from the 
last relations that the-interna~,re~nan~e also serves as an obstacle for constructing solutions in those 
cases when the evenness of the numbers n and m are the same. The conditions for an internal 
resonance to occur can be written in the form 

?.&=h&?nz, @=I, 2, rn=l, 2, ” * . (4.6) 

where the number y1 is fixed while m and p are variables. Henceforth we will assume that there is no 
internal resonance. 
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For 4 = 3, problem (4.4) is the problem “on the spectrum”. We will write it in the form 

LaQu/azZ+hs (nn)*w+&) =o+ ~,aw/azch(z) =o 

(z-0, 1) 

Then the condition for it to be compatible has the form 

393 

- s g (z).cos (nnz) dz + h (0) - (- l)n h (1) = 0 (4.7) 
0 

In view of the fact that condition (4.7) is satisfied and &a3 = 2C333a, we obtain 

(1) B J&a av 
v3 =--- 

2h, BYa i 1 2 - + cos (nnz) + cuy (4.8) 

The solution (4.8) is obtained apart from an arbitrary term and is a general solution of the 
homogeneous problem. Without loss of generality we will assume C = 0. 

The functions vq(‘) are found from the boundary-value problems 

[u$O) , vP(‘) are given by (4.3), (4.5) and (4.8)]. 
With the assumptions made, vl(*) and vzt2) are defined uniquely. We will now consider the 

compatibility condition (4.7) required to construct v3 (2) After simplifications it can be written in the . 
form 

[the function Fy(z) is the same as in (4.5)]. 
This process of constructing successive approximations can be continued. 

5. We will seek solutions of Eq. (4.9), which decay exponentially as yl* +yz2-, ~0, and the 
corresponding values of p2. In [7,8] solutions were obtained of equations for which (4.9) is a special 
case. This enables us to suggest a simpler method of solution. 

The quadratic form fi is positive definite, while the matrix A = {aaD} is symmetrical. We obtain 
an affine transformation of the variables 

yrz-G&r c- (Gi3) (5.1) 

as a result of which f2 = t12 + tz2, while the matrix A becomes diagonal. For this, we initially obtain 
some transformation y, = daPzP, which convertsf2 into ~1’ + zz* [if h(xl , x2) is a surface of rotation 
of radius R at the vertex, this transformation cannot be carried out]. As a result, the matrix A 
becomes 
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A’=(D-‘)rAD-‘, D= (&p) 

We further take an orthogonal transformation of rotation 

zo=errbtfi. E- (e*s), E-‘=E* 

such that the matrix A” becomes diagonal 

A" =EA’Er=diag(u,, azf 

Then the transformation (5.1) with the matrix C = DE will be the required one, while Eq. (4.9) 
will take the form 

u,g + a, $$ + h, (nn)” (28, - t,’ -t,*) 1; 25 0 (5.2) 

Suppose first of ah that al > 0, a2 > 0. Then the decaying solutions of Eq. (5.2) are the pruducts of 
parabolic-cylinder functions 

where 

(5.3) 

where H,,,(x) are Hermitian polynomials of degree m. 
Returning to the initial notation, we will represent the approximate expression for the 

three-parameter series of frequencies corresponding to localized modes of vibration as 

and the characteristic scale r of the modes of vibration in a tranversal direction 

For a given y1 the least frequency of vibrations is obtained for ml = m2 = 0, where the polynomials 
H,,(x)= 1 in (5.3). 

When ~onst~~ting higher approximations we arrive at a non-homogeneous equation, the 
left-hand side of which is identical with (5.2), while the right-hand side contains the function 

Q(l,, t,)exp( -‘/r(cIXt,z+c22tzt) I 

In this case, as in [8], for even approximations, the evenness of the degree of ~l~ornial Q is the 
same as the evenness of the degree ml + m2 of the poiynomiai in (5.3). In this connection, from the 
condition for decaying solutions to exist for the even approximations we obtain Pk in (4.1). For odd 
approximations & = 0, which was noted in (4.1). 

If at least one of the numbers al and a2 is negative or zero, there are no ex~nentially decaying 
solutions of Eq. (5.2) and of system (1.1). Consequently, the necessary condition for such solutions 
to exist is that the matrix A must be positive definite [see (4.10)]. Note that in view of the presence 
of the factor FY (0), the elements of this matrix can take any value from - m to + ~0. In particular, its 
positive definiteness will necessarily break down in the nei~bourhoods of those internal resonances 
(4.4) for which the evennesses of the numbers m and y1 are different. The positive definiteness of the 
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matrix A is a fact that, to a known extent, is random and depends on the elastic moduh Eijkl, the 
choice of one of the eigenvalues A,, of the matrix Ei3k3 and the number n of half-waves in the 
thickness of the plate. 
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HEAT TRANSFER THROUGH A RIGID DISC PRESSED INTO 
AN ELASTIC HALF-SPACE-f 
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The axisymmetrical contact problem of the indentation of a rigid disc, modelled by a cylindrical punch, into 

an elastic half-space is considered. The upper end of the cylinder is subjected to convective heating or 

cooling and the therma contact between the punch and the half-space is non-ideal. Outside the region of 

contact heat exchange occurs with the external medium in accordance with Newton’s law. The solution of 

the thermo-elasticity problem for the half-space is constructed using the Hankel transformation, and the 

problem of heat conduction for a cylinder is solved by the method of straight lines. The existence of zones 

where the half-space becomes detached from the punch is established. The temperature fields, heat fluxes 

and contact stresses in the interacting bodies are found. 

1. FORMULATION OF THE PROBLEM 

WHEN solving contact problems of thermo-elasticity it is of interest to investigate the phenomenon 
in which a punch becomes separated from the base [l-3]. However, in these and other 
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